
Generating Remote Control Interfaces for
Complex Appliances

Jeffrey Nichols*, Brad A. Myers*, Michael Higgins†, Joseph Hughes†,
Thomas K. Harris*, Roni Rosenfeld*, Mathilde Pignol*

* School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{jeffreyn, bam, tkharris, roni}@cs.cmu.edu,

mpignol@andrew.cmu.edu
http://www.cs.cmu.edu/~pebbles/puc/

†MAYA Design, Inc.
Suite 702

2100 Wharton Street
Pittsburgh, PA 15203

{higgins, hughes}@maya.com

Figure 1. A diagrammatic overview of the personal universal controller system, showing an appliance, a
snippet from our specification language, and two graphical interfaces generated from the specification.

ABSTRACT
The personal universal controller (PUC) is an approach for
improving the interfaces to complex appliances by introduc-
ing an intermediary graphical or speech interface. A PUC
engages in two-way communication with everyday appli-
ances, first downloading a specification of the appliance’s
functions, and then automatically creating an interface for
controlling that appliance. The specification of each appli-
ance includes a high-level description of every function, a
hierarchical grouping of those functions, and dependency
information, which relates the availability of each function
to the appliance’s state. Dependency information makes it
easier for designers to create specifications and helps the
automatic interface generators produce a higher quality re-
sult. We describe the architecture that supports the PUC,
and the interface generators that use our specification lan-
guage to build high-quality graphical and speech interfaces.

Keywords: handheld computers, remote control, appli-
ances, personal digital assistants (PDAs), Pebbles,
Universal Speech Interface (USI), personal universal con-
troller (PUC)

INTRODUCTION
Increasingly, home and office appliances, including televi-
sions, VCRs, stereo equipment, ovens, thermostats, light
switches, telephones, and factory equipment, are designed
with many complex functions, and often come with remote
controls. However, the trend has been that as appliances get
more computerized with more features, their user interfaces
become harder to use [2].

Another trend is that people are increasingly carrying com-
puterized devices, such as mobile phones, pagers, and
personal digital assistants (PDAs) such as the Palm Pilot or
PocketPC. Many of these devices will soon contain proces-
sors powerful enough to support speech applications and
hardware for wireless networking. Short-distance radio
networks, such as 802.11b and Bluetooth [6], are expected
to enable many devices to communicate with other devices
that are within close range.

We are investigating how handheld devices and speech can
improve the interfaces to home and office appliances, using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST’02, October 27-30, 2002, Paris, FRANCE.
Copyright 2002 ACM 1-58113-488-6/02/0010…$5.00.

Volume 4, Issue 2 161

an approach we call the personal universal controller
(PUC). A PUC provides an intermediary interface with
which the user interacts as a remote control for any appli-
ance. We envision PUCs running on a variety of platforms,
including handheld devices with graphical interfaces or
hidden PCs with speech recognition software. The PUC dif-
fers from today’s universal remote controls, such as the
Philips Pronto [17] or the inVoca speech remote [10], be-
cause it is self-programming. This means that the PUC
engages in a two-way exchange with the appliance,
downloading a description of the appliance’s functions and
then automatically creating a high quality interface. The
PUC and the appliance exchange messages as the user in-
teracts with the interface. The two-way communication
allows the appliance to update the interface and provide
feedback to the user.

Another difference from the Pronto and similar devices is
the PUC’s ability to provide an interface to the complete
functionality of each appliance. Most universal remotes
achieve their “universal” nature by providing an interface to
only a subset of the most commonly used functions. In our
preliminary studies, we have found that doing tasks on a
complete PUC interface was still twice as fast as using the
actual manufacturer’s interfaces and users made one-half
the errors.

Using a high-level description to generate interfaces also
gives the remote controllers flexibility to choose their inter-
face modality. We have created interface generators that
can create graphical and speech interfaces. On a PUC that
supports it, this might allow the user to switch freely be-
tween multiple interaction modalities, perhaps using a
graphical interface to browse a list of songs on an MP3
player and a speech interface to pick a particular one. Mul-
tiple PUCs that each supported a different modality could
also be used simultaneously to achieve the same effect.

The description of the appliance’s functions must have
enough information to allow a PUC to generate a high qual-
ity user interface, but not contain specifics about how the
interface should look or feel. Those choices should be left
up to the interface generator. Our specification language
contains, like similar systems [16, 29], a hierarchical group-
ing of all appliance functions that we call the group tree.
This tree is determined by the designers of the appliance
specifications based upon their understanding of how the
appliance’s functions relate to each other.

A novel feature of our specification language is that it also
includes dependency information, which describes the
availability of each function relative to the appliance’s state.
Dependency information is useful for two reasons: 1) it al-
lows the interface to provide feedback to the user about the
availability of a function, such as “graying out” a button in
a graphical interface, and 2) it helps the interface generators
organize functions. Organization improves because depend-
ency information is objective, rather than subjective like the

group tree. For example, a graphical interface generator
might place sets of functions on overlapping panels because
the dependencies indicate they will never be available at the
same time. Using a similar technique, the grammar of a
speech interface may be simplified because the generator
knows that a certain phrase will only make sense when the
appliance is in a particular state.

The dependency information also makes it easier for de-
signers to create the group tree because there is no need for
the tree to exactly match the structure of the resulting inter-
faces. The designer can approximately match the structure
of the appliance in the group tree and the interface genera-
tor can infer the rest from the dependencies. Another
benefit of this approach is that it allows the designer to in-
clude more structure in the group tree than is necessary for
most interfaces, e.g. making the tree deeper with smaller
groups. This makes our specification more portable because
a PUC generating a graphical interface on a small screen
can take advantage of this extra detail, while other devices
can safely ignore it by comparing the group tree to the
structure inferred from dependencies. We have developed
algorithms for generating graphical and speech interfaces
by combining dependency information with the group tree.

Our speech interface generator uses Universal Speech Inter-
face (USI) techniques. The USI project [19] at Carnegie
Mellon University is creating a standardized interaction
style for speech communication between humans and ma-
chines. A USI design consists of a few syntactic rules and a
handful of application-independent keywords, such as op-
tions, status, what_is_the, and more. The rules are designed
to create a semi-structured interaction style―mnemonic but
not necessarily identical to natural language (NL). Unlike
full NL interfaces, data collection and skilled grammar
creation are not needed, and the small vocabulary and syn-
tactic space ensures high recognition accuracy. Unlike
command-and-control speech interfaces, the user need not
master any particular application, and can become immedi-
ately productive in any new USI application by leveraging
their existing knowledge of the universal keywords and
rules. Studies have shown that the interaction style can be
learned within five minutes of training [21]. Although USI
design is guided by analysis of a variety of application
types, so far USI designs have been tested primarily in in-
formation access applications. The work reported here is
the first exploration of USI for device-control applications.

Another important piece of the PUC system is the ability to
control actual appliances from the interfaces created by our
generators. To enable this, the PUC system provides appli-
ance adaptors: software and hardware that translate from the
proprietary communication protocols found on many appli-
ances to our PUC protocol. This architecture has allowed us
to use PUCs to control a shelf stereo, camcorders with
IEEE 1394 support via the AV/C protocol, the WinAmp
media player, a Mitsubishi VCR that supports HAVi [7],

162 Volume 4, Issue 2

and several others. We are working to support emerging
industry standards such as UPnP [26] and JINI [24].

The next section of this paper examines related work. In the
sections following we describe the architecture in greater
detail, and discuss the specification language and our ap-
proach to its design. We continue by describing our
communication protocol, followed by a detailed section
discussing the graphical and speech interface generators and
their use of dependency information. We conclude with
thoughts on future directions for this project.

RELATED WORK
A number of research groups are working on controlling
appliances from handheld devices. Hodes, et. al. propose a
similar idea to our PUC, which they call a “universal inter-
actor” that can adapt itself to control many devices [8].
However, their research focuses on the system and infra-
structure issues rather than how to create the user interfaces.
An IBM project [5] describes a “Universal Information Ap-
pliance” (UIA) that might be implemented on a PDA. The
UIA uses an XML-based language called MoDAL from
which it creates a user interface panel for accessing infor-
mation. However, the MoDAL processor apparently only
handles simple layouts and its only type of input control is
text strings. The Stanford ICrafter [18] is a framework for
distributing appliance interfaces to many different control-
ling devices. While their framework supports the automatic
generation of interfaces, their paper focuses on hand-
generated interfaces and shows only one simple automati-
cally generated interface. They also mention the difficulty
of generating speech interfaces.

UIML [1] is an XML language that claims to provide a
highly-device independent method for user interface design.
UIML differs from the PUC in its tight coupling with the
interface. UIML specifications can define the types of com-
ponents to use in an interface and the code to execute when
events occur. The PUC specification language leaves these
decisions up to each interface generator.

The XWeb [16] project is working to separate the function-
ality of the appliance from the device upon which it is
displayed. XWeb defines an XML language from which
user interfaces can be created. Unlike the PUC specification
language, XWeb’s language uses only a tree for specifying
structural information about an appliance. Their approach
seems to work well for interfaces that have no modes, but it
is unclear how well it would work for remote control inter-
faces, where modes are commonplace. XWeb also supports
the construction of speech interfaces. Their approach to
speech interface design, including emphasis on a fixed lan-
guage and cross-application skill transference, is quite
similar to ours, as it is derived from a joint philosophy [20].
XWeb’s language design allows users to directly traverse
and manipulate tree structures by speech, however they re-
port that this is a hard concept for users to grasp [16]. Our

Universal Speech Interface design differs by trying to stay
closer to the way people might talk about the task itself, and
is somewhat closer to naturally generated speech.

The INCITS V2 [30] standardization effort is developing
the Alternative Interface Access Protocol (AIAP) to help
disabled people use everyday appliances with an approach
similar to the PUC. AIAP contains a description language
for appliances that different interface generators use to cre-
ate interfaces for both common devices, like the PocketPC,
and specialized devices, such as an interactive braille pad.
We have begun collaborating with the V2 group and plan to
continue this in the future.

A number of research systems have looked at automatic de-
sign of user interfaces for conventional computers. These
sometimes went under the name of “model-based” tech-
niques [25]. Here, the programmer provides a specification
(“model”) of the properties of the application, along with
specifications of the user and the display. This approach
was moderately successful for creating dialog boxes [11,
27] and creating complete interfaces in a limited range [15,
25]. The ITS system from IBM was used to create all the
screens for the information kiosks at the EXPO’92 worlds
fair [29]. Of particular note is the layout algorithm in the
DON system that achieved a pleasing, compact, and logical
placement of the controls [11]. We extend these results to
create panels of controls on significantly different hand-
helds, without requiring designer intervention after the
interfaces are generated.

ARCHITECTURE
The PUC architecture has four parts: appliance adaptors, a
specification language, a communication protocol, and in-
terface generators (see Figure 2). There are several benefits
to the design we have chosen:

• Interfaces can be automatically generated.

• The peer-to-peer connection model allows for
scalability.

Figure 2. An architectural diagram of the PUC system showing
one connection (multiple connections are allowed at both ends).

Volume 4, Issue 2 163

• The transport layer independence between PUCs and
appliances makes communication easier.

• Proprietary appliance control protocols can be sepa-
rated from the PUC framework.

The PUC architecture is designed to allow for automatic
interface generation by a wide range of devices in a wide
range of modalities. This is enabled by a two-way commu-
nication protocol and a specification language that allows
each appliance to describe its functions to an interface gen-
erator. The specification language separates the appliance
from the type of interface that is being used to control it,
such as a graphical interface on a handheld or a speech in-
terface on a mobile phone. A later section in this paper
describes interface generators that we have created for the
graphical and speech modalities.

A key part of the architecture is the network that PUCs and
appliances use to communicate. We assume that each appli-
ance has its own facility for accepting connections from a
PUC. The peer-to-peer aspect of this choice allows the PUC
architecture to be more scaleable than other systems, such
as ICrafter [18] and UIA [5], which rely on a central server
to manage connections between interfaces and appliances.
A PUC could discover appliances by intermittently sending
out broadcast requests, as in the service discovery portion
of the Bluetooth [6] protocol. However, service discovery
has not yet been implemented and is the subject of future
work.

We have also attempted to make communication easier by
making few assumptions about the underlying transport
mechanism. It is unreasonable to expect that every control-
ler device will be able to communicate over the 802.11b
wireless Ethernet protocol, for example. The communica-
tion protocol, described later, has been designed with a
small number of messages to operate over a wide variety of
transport layers. The protocol is currently only implemented
on TCP/IP, but we have plans to implement on a non-
reliable protocol such as UDP, and also on Bluetooth if it
becomes widespread.

Although we assume network independence for PUC com-
munication, we cannot make any assumptions about how to
communicate with actual appliances. Several standards exist
for appliance control, including Microsoft’s UPnP [26],
Sun’s JINI [24], and HAVi [7], but so far none of these
have been widely accepted. Many consumer electronics
manufacturers have their own proprietary methods for
communicating with and between their appliances. Often
these methods are not available for use by the general pub-
lic, although there are Internet groups dedicated to reverse
engineering these protocols [9]. Most devices in the low-
end market have no means of being controlled externally,
except for one-way IR-based remote control. These appli-
ances must be altered at the hardware level to achieve two-
way communication with a PUC.

To connect the PUC to any real appliance, we must build an
appliance adaptor, i.e. a translation layer to its built-in pro-
tocol (see Figure 2). We imagine that an adaptor would be
built for each proprietary appliance protocol that the PUC
communicates with. For example, we have built a software
adaptor for the AV/C protocol that can control most cam-
corders that support IEEE 1394. We have also built
adaptors for connecting to specific devices, such as an
Audiophase shelf stereo that we modified with custom
hardware to enable two-way communication. We have re-
cently begun constructing an adaptor for the HAVi
protocol, and plan to pursue UPnP in the future. This archi-
tecture allows a PUC to control virtually any appliance,
provided the appliance has a built-in control protocol or
someone has the hardware expertise to add one.

In order to make the construction of new appliance adaptors
easy, we have created an adaptor development framework.
The framework, implemented entirely in Java, manages all
PUC communication for the adaptor, allowing the pro-
grammer to concentrate on communicating with the
appliance. Using our framework, we implemented adaptors
for the X10 protocol and the WinAmp media player in a
matter of hours.

SPECIFICATION LANGUAGE
There must be a description of an appliance’s functions so
the PUC can automatically generate an interface. This de-
scription must contain enough information to generate a
good user interface, but it should not contain any informa-
tion about look or feel. Decisions about look and feel
should be left up to each interface generator. Further re-
quirements for our specification language are described
elsewhere [13].

Approach
As a first step towards determining what information should
be included in the specification language, we hand-designed
control panels for two appliances. We evaluated them for
quality with users, and then extracted the features of these
control panels that contribute most to their usability.

(a) (b)

Figure 3. a) The Aiwa CX-NMT70 shelf stereo and b) the AT&T
1825 telephone/digital answering machine used in our research.

164 Volume 4, Issue 2

We chose two common appliances as the focus of our hand-
designs: the Aiwa CX-NMT70 shelf stereo with its remote
control, and the AT&T 1825 telephone/digital answering
machine (see Figure 3). We chose these two appliances be-
cause both are common, readily available, and combine
several functions into a single unit. The AT&T telephone is
the standard unit installed in many offices at Carnegie Mel-
lon, and Aiwa-brand stereos seem to be common, at least
among the user population that participated in our compari-
son studies. Ten of our twenty-five subjects owned Aiwa
systems.

We created our hand-designed interfaces in two phases, ini-
tially on paper and later as Visual Basic implementations on
a Microsoft PocketPC. Each interface supported the com-
plete set of appliance functions. At each phase, we
iteratively improved the interfaces with heuristic analyses
and performed a user study. The user study in each phase
was dual-purpose: to compare our hand-designed interfaces
with the interfaces on the actual appliances and to see what
problems users had with the hand-designed interfaces.

The comparison study in both phases showed that our hand-
designed interfaces were much better than the manufac-
turer’s interfaces on the actual appliances [14]. In both
studies users were asked to perform a variety of simple and
complex tasks. Some simple tasks were dialing the phone
or changing the volume on the stereo, whereas some com-
plex tasks were programming a list of tracks into the
stereo’s CD player or copying a message between two of
the four mailboxes on the telephone’s built-in answering
machine. We found that for both hand-designed interfaces,
Palm paper prototypes and PocketPC implementations, us-
ers completed tasks in one-half the time and with one-half
the errors as compared to the actual appliances [14].

The large differences in this study can be attributed to prob-
lems with the appliance interfaces. Most of the problems
users had with the built-in appliance interfaces could be

traced to poor button labels and inadequate interface feed-
back. Both appliances had buttons with two functions, one
when the button was pressed and released and one when the
button was pressed and held. Our subjects rarely discovered
the press and hold function. The stereo also had buttons that
changed function with the appliance’s mode.

Interface Analysis
Once we were confident that our interfaces were usable, we
analyzed them to understand what functional information
about the appliance was needed for designing the interfaces.
This included questions such as “why are these elements
grouped together?” or “why are these widgets never shown
at the same time?” These are questions that might suggest
what information should be contained in the specification
language.

Language Definition
The PUC specification language is XML-based and in-
cludes all of the information that we found in our analysis
of the hand-designed interfaces. The language has been
fully documented and a DTD is available for validating
specifications. The documentation can be downloaded from
our project web site:
http://www.cs.cmu.edu/~pebbles/puc/specification.html

State Variables and Commands
Interface designers must know what can be manipulated on
an appliance before they can build an interface for it. We
discovered from our PocketPC implementations that most
of the manipulable elements could be represented as state
variables. Each state variable has a given type that tells the
interface generator how it can be manipulated. For example,
the radio station state variable has a numeric type, and the
interface generator can infer the tuning function because it
knows how to manipulate a numeric type. Other state vari-
ables include the current track of the CD player and the
status of the tape player (stop, play, fast-forward, etc.).

(a) (b) (c) (d)

Figure 4. Hand-designed interfaces for the phone (a-b) and stereo (c-d) on the Palm and PocketPC. The Palm interfaces are paper prototypes,
whereas the PocketPC interfaces were actually implemented in Microsoft’s embedded Visual Basic.

Volume 4, Issue 2 165

After further exploration, we discovered that state variables
are not sufficient for describing all of the functions of an
appliance. Some elements, such as the seek button on a ra-
dio, cannot be represented as state variables. Pressing the
seek button causes the radio station state variable to change
to some value that is not known in advance. The seek func-
tion must be represented as a command, a function whose
result cannot be described easily in the specification.

Commands are also useful when an appliance is unable to
provide feedback about state changes back to the controller,
either by manufacturer choice or a hardware limitation of
the appliance. In fact, the remote control technology of to-
day can be simulated on the PUC by writing a specification
that includes only commands. This is exactly like building a
remote control that has only buttons. Any feedback is then
restricted to the appliance’s front panel.

Type Information
Each state variable must be specified with a type so that the
interface generator can understand how it may be manipu-
lated. For example, in Figure 1 the state shown has an
integer type. We define seven generic types that may be as-
sociated with a state variable:

• boolean
• integer
• fixed point
• floating point

• enumerated
• string
• custom

The most interesting of these types is the custom type,
which is provided to allow for the specification of standard
widget arrangements, such as the play-stop-pause button
groups seen in Figure 4c-d. Each of these button groups
represents one state variable, the status of the CD and tape
players respectively. Such a widget arrangement presents
two problems: the first is that there is a complex mapping
desired between the state of the appliance and the interface
elements presented to the user; the second is that this com-
plex mapping can and should be reused. Ideally, interface
generators will recognize custom types and present a famil-
iar set of interface elements. This is always what happens in
the current implementation. It is unreasonable, however, to
expect every interface generator to understand every custom
type. Therefore we intend to provide a type interrogation
feature in our protocol which will involve breaking down a
custom type into simpler component types that can be guar-
anteed to be understood across all interface generators.

Label Information
The interface generator must also have information about
how to label the interface components that represent state
variables and commands. Providing this information is dif-
ficult because different form factors and interface
modalities require different kinds of label information. An
interface for a mobile web-enabled phone will probably re-
quire smaller labels that an interface for a PocketPC with a
larger screen. A speech interface may also need phonetic

mappings and audio recordings of each label for text-to-
speech output. We have chosen to provide this information
with a generic structure that we call the label dictionary.

Each dictionary contains a set of labels, most of which are
plain text. The dictionary may also contain phonetic repre-
sentations using the ARPAbet (the phoneme set used by
CMUDICT [3]) and text-to-speech labels that may contain
text using SABLE mark-up tags [23] and a URL to an audio
recording of the text. The assumption underlying the label
dictionary is that every label contained within, whether it is
phonetic information or plain text, will have approximately
the same meaning. Thus the interface generator can use any
label within a label dictionary interchangeably. For exam-
ple, this allows a graphical interface generator to use a
longer, more precise label if there is lots of available screen
space, but still have a reasonable label to use if space is
tight. Figure 1 shows the label dictionary, represented by
the <labels> element, for a CD track state with two textual
labels and a text-to-speech label.

Group Tree
Interfaces are always more intuitive when similar elements
are grouped close together and different elements are kept
far apart. Without grouping information, the play button for
the CD player might be placed next to the stop button for
the Tape player, creating an unusable interface. We avoid
this by explicitly specifying grouping information using a
group tree.

We specify the group tree as an n-ary tree that has a state
variable or command at every leaf node (see Figure 5).
State variables and commands may be present at any level
in the tree. Each branching node is a “group,” and each
group may contain any number of state variables, com-
mands, and other groups. We encourage designers to make

Figure 5. A sample group tree for a shelf stereo with both a CD
player and radio tuner. The black boxes represents groups and the
white boxes with text represent state variables. The mode variable
indicates which source is being played through the speakers.

166 Volume 4, Issue 2

the group tree as deep as possible, in order to help space-
constrained interface generators. These generators can use
the extra detail in the group tree to decide how to split a
small number of components across two screens. Interface
generators for larger screens can ignore the deeper branches
in the group tree and put all of the components onto a single
panel.

Dependency Information
The two-way communication feature of the PUC allows it
to know when a particular state variable or command is un-
available. This can make interfaces easier to use, because
the components representing those elements can be dis-
abled. The specification contains formulas (see the
<active-if> element in Figure 1) that specify when a state
or command will be disabled depending on the values of
other state variables, currently specified with three types of
dependencies: equal-to, greater-than, and less-than. Each
state or command may have multiple dependencies associ-
ated with it, combined with the logical operations AND and
OR. These formulas can be processed by the PUC to deter-
mine whether a component should be enabled when the
appliance state changes.

We have discovered that dependency information can also
be useful for structuring graphical interfaces and for inter-
preting ambiguous or abbreviated phrases uttered to a
speech interface. For example, dependency information can
help the speech interfaces interpret phrases by eliminating
all possibilities that are not currently available. The
processing of these formulas will be described later in the
interface generation section.

COMMUNICATION PROTOCOL
The communication protocol enables appliances and PUCs
to exchange information bi-directionally and asynchro-
nously. The protocol is XML-based and defines six
messages, two sent by the appliance and four sent by the
PUC. The PUC can send messages requesting the specifica-
tion, the value of every state, a change to a particular state,
or the invocation of a command. The appliance can send the
specification or the current value of a particular state. When
responding to a PUC request for the value of every state,
the appliance will send a current value message for each of
its states. Full documentation for our communication proto-
col can be downloaded from our project web site:
http://www.cs.cmu.edu/~pebbles/puc/protocol_spec.html

INTERFACE GENERATION
The PUC architecture has been designed to be independent
of the type of interface presented to the user. We have de-
veloped generators for two different types of interfaces:
graphical and speech. This section describes our implemen-
tation of these two interface generators, including our
algorithms for working with dependency information.

Graphical Interface Generator
We have implemented a graphical interface generator for
the Compaq iPAQ handheld computer using the Personal-
Java API. This generator takes an arbitrary description
written in our specification language and makes use of the
group tree and dependency information to create a high
quality interface. The actual UI components that represent
each state variable and command are chosen using a deci-
sion tree [4]. The components are then placed into panels
according to the inferred structure, and laid out using the
group tree. The final step of the generation process instanti-
ates the components and places them on the screen.

A key focus of the graphical interface generator is the struc-
ture portion of the interface layout. When we looked back at
our hand-designed interfaces, we noticed that they could be
broken down into small groups of components that were
placed relative to each other. For example, Figure 4c shows
an interface for the CD player of a shelf stereo. This inter-
face can be broken down into five structural groups: the
global functions in the vertical sidebar, the tabs for control-
ling stereo mode, the less-used CD controls (e.g. Random),
the disc and track indicators, and the play controls. Each of
these groups has a small number of controls and each con-
trol is aligned with the others in their small group, creating
a combined layout that is complex. Focusing on the struc-
ture portion makes the layout problem solvable and allows
us to create complex layouts.

Inferring Panel Structure From Dependencies
The use of different panels can be beneficial to a graphical
interface. Commonly-used or global controls can be made
available in a sidebar where they are easily accessible. Con-
trols that are only available in the current appliance mode
might be placed on a panel in the middle of the screen that
changes with the mode, hiding functions from the other
modes that are not available.

The graphical interface generator uses dependency informa-
tion to determine how to divide the screen into panels, and
to assign branches of the group tree to each panel. We have
found it useful to compare the dependencies of different
state variables and commands to determine if they are never
available at the same time. If two variables are mutually ex-
clusive, then they might be placed on separate panels.
Instead of using dependency information to find mutual ex-
clusion, we could instead have required the specification
designers to place markers on all group tree nodes that have
mutually exclusive branches. Determining how to place
markers requires designers to not only determine what the
dependencies are, but then discover all mutually exclusive
situations themselves. Instead the designers can enumerate
the dependency information and choose a group tree struc-
ture that seems intuitive. They can rely on the interface
generator to discover relationships within the dependency
information and infer panel structure, even if no groups
have been specified.

Volume 4, Issue 2 167

Unfortunately, the task of determining mutual exclusiveness
for an arbitrary set of state variables is NP-hard. We reduce
the difficulty of the problem by considering mutual exclu-
sion with respect to a single given variable. Our algorithm
starts by obtaining a list of all state variables that other
commands and states depend upon. Our experience shows
that this is a small number of variables for most specifica-
tions. We iterate through this list, starting with the state that
is most depended upon. Usually the states that are most de-
pended upon represent higher-level modes and we prefer to
create high-level structure earlier in the algorithm.

For each state, the algorithm finds the state’s location in the
group tree and gets a pointer to its parent group. Dependen-
cies on the state are collected from each of the children and
are analyzed to find mutual exclusion. If mutual exclusion is
found, rules are applied to determine the panel structure to
use. We currently have three rules at this level:

1. If the state has an enumerated type and there are mu-
tually exclusive groups of components that are active
for each value of the state, create a tabbed panel com-
ponent with a panel for each value of the enumeration.

2. If the state has a boolean type and all the other states
and commands are active for one value of the state,
create two full-screen overlapping panels. Each panel
has a button for toggling the boolean type. This rule is
primarily used for the power button.

3. Create an overlapping panel for every mutually exclu-
sive group and make sure a component exists at a
higher level of the tree for changing this state’s value.

We plan to create additional rules in the future that create
pop-up dialogs or keep all components in the same panel.

Making the Interface Concrete
Once the initial structure has been defined for the interface,
our generator can begin making the interface concrete. The
first step is choosing what kind of component to assign to

each state variable and command. The generator uses a de-
cision tree to make these choices [4]. The decision tree
takes into account the following questions when choosing a
component:

• Is this a command or a state variable?

• What it the type of the state variable?

• Is the state variable read-only?

• Was a panel structure rule (see above) applied be-
cause of this state variable?

For example, in our current system a command is always
represented by a button component. Read-only states are
almost always represented by a label component. Boolean
states are represented by checkboxes, unless the depend-
ency algorithm applied panel structure rule #2 because of
this state. In this situation, a button that toggles the state’s
value is used instead.

Once the components have been selected, the interface gen-
erator recursively traverses the group tree and inserts each
component into a structure that we call the interface tree.
The interface tree represents the panel structure of the gen-
erated interface and is used for translating abstract layout
relationships to a concrete interface. Each leaf node in the
tree is a panel and each branching node specifies how the
child panels are placed relative to each other. Branching
nodes may represent a set of panels separated by horizontal
or vertical edges, or a set of overlapping panels. The par-
ticular branching nodes used are chosen by the rules
described in the dependency inference section above.

Each panel node in the tree also contains a set of row ob-
jects, which describe how components should be placed
relative to each other. Most components are placed in the
panel using a one-column layout with an adjacent label, but
other row layouts are also used. The following rules are
used to select different layouts:

• If a group is found that contains a label and two com-
ponents that do not need their own labels (such as
buttons), then a row will be created using the label
with the two components in the space typically re-
served for a single component. An example is the seek
buttons in Figure 6a.

• Some of the components chosen by the decision tree
may prefer to occupy the full width of their panel. In
this case, a row is created that allows the component
to fill the full width of its container, including the
space typically reserved for labels.

• If a group is found that contains two components that
both need their own labels (such as text fields or se-
lection lists), then a row will be created that has two
columns. Each component and its label will be placed
in a separate column.

(a) (b)

Figure 6. Interfaces produced by the graphical generator for our
Audiophase shelf stereo.

168 Volume 4, Issue 2

After the group tree has been traversed, the interface is
made concrete by recursively traversing the interface tree
twice. The first traversal allocates space for each compo-
nent and determines the size and location of every panel.
The second traversal places and sizes the components
within their rows, and then assigns labels by picking the
largest label that will fit in the space allocated. When this
traversal is complete, an interface is presented to the user.
Example interfaces generated for controlling our shelf ste-
reo are shown in Figure 1 and Figure 6.

Speech Interface Generator
The speech interface generator creates an interface from a
PUC specification, using USI interaction techniques [22].

Generation Procedure
The speech interface generator differs from the graphical
interface in that it connects to multiple PUC adaptors (if
multiple adaptors can be found on the network), requests
the device specifications, and then uses those specifications
collectively to configure itself so it can control all devices
with the same speech grammar. This includes building a
grammar for the parser and a language model and pronun-
ciation dictionary for the recognizer.

The generated grammar is compatible with the Phoenix
parser [28], which is used by the USI library to parse user
utterances. A grammar is generated for each device that
contains phrases for query and control. Query phrases in-
clude determining what groups are available, what states
and commands are available, what values the states can
take, as well as what values they currently hold. Control
phrases allow the user to navigate between groups, issue
commands and change states. All of the device-specific
grammars, together with a device-independent USI gram-
mar, are compiled into a single combined grammar
representing everything that the speech interface will under-
stand. This has been implemented in a test system that is
capable of controlling a shelf stereo, a Sony camcorder via
the AV/C protocol and multiple X10 devices.

Lessons Learned
We encountered several challenges generating an interface
using USI techniques from the PUC specification language.
The language makes a distinction between state variables
and commands. But what is best described as a variable in a
visual interface (e.g. speaker volume) might be better
thought of as a command in a spoken interface (e.g.
“louder”). Secondly, in a visual environment, groupings of
functionalities or widgets need not have a name; such
grouping can be implied by adjacency or by a visual cue
such as a frame. In speech interfaces, grouping must be as-
signed a word or phrase if they are to be directly accessed.
Occasionally, appropriate names are hard to find, and may
not even exist. In the other direction, choosing from a long
list of names is easy with speech, yet poses a special chal-
lenge to visual interfaces. These challenges are consistent

with the observations of others [18] and is a topic of current
research.

We have addressed these interface generation challenges in
our USI-PUC implementation. Consistent with the graphical
interface’s translation from the group tree to the graphical
interface tree, the speech interface translates the group tree
into a USI-interaction tree. This tree, like the graphical in-
terface generator’s tree, is a more concrete representation of
what interactions can take place between the system and the
user. The tree consists of nodes with phrasal representa-
tions. Each node is either actionable or incomplete. An
actionable node contains a phrase that, when uttered, will
cause some device state change. An incomplete node con-
tains a phrase that requires more information before it can
be acted upon; uttering the phrase causes the system to
prompt the user with completion options, derived from that
node’s children. Grouping information is represented in the
structure of the tree, and influences exploration, disam-
biguation, and scope.

FUTURE WORK
There are numerous directions for us to pursue with our
work on the personal universal controller in addition to
those mentioned previously. There are several outstanding
issues with the specification language, and a number of di-
rections in which to take the interface generators.

One problem with the current specification language is that
it does not include a list type. Lists are important for many
appliances, such as the messages for an answering machine
and the songs on an MP3 player. There are many issues to
address before the PUC framework can handle lists ade-
quately. One of the most difficult problem is inferring what
functions can be performed on the list. Unlike for an integer
or boolean state variable, where inferring the possible ma-
nipulations is simple, there are many different ways to
operate on lists, and it is rare to find a list that uses every
one. Some lists, such as a play list for an MP3 player, sup-
port the addition and deletion of elements at arbitrary
locations. Others do not, such as the answering machine
message list shown in Figure 4b, in which new messages are
always appended to the end but can be removed from any
location. It does not seem reasonable to enumerate all of the
possible list operations that might be supported, and then
specify which of those operations are supported for each
instance of a list on the appliance. We are currently working
on a more general solution for this problem.

Finally, one goal of the personal universal controller is to
provide consistent interfaces across appliances with similar
functions. This requires an interface generator that is adap-
tive, based upon interfaces that it has created in the past. It
must also support some kind of pattern recognition for de-
termining from a specification that two appliances have
similar functions. These are both difficult problems that we
will be addressing in our future research.

Volume 4, Issue 2 169

CONCLUSION
We have described the design and architecture of the per-
sonal universal controller, a system for automatically
generating high-quality multi-modal remote control inter-
faces for complex appliances. The system includes a two-
way communication protocol, adaptors for translating from
proprietary appliance protocols to the PUC protocol, a
specification language for describing the functions of an
appliance, and generators that automatically build interfaces
from specifications. A novel element of our system is the
use of dependency information for helping generators create
high quality interfaces. We have presented generators that
use our specification language to create both graphical and
speech interfaces.

ACKNOWLEDGMENTS
This work was conducted as a part of the Pebbles [12] project. The speech
interface was also conducted as part of the Universal Speech Interfaces
project [19]. Marc Khadpe did a portion of the work on the prototype
phone interface as a part of a summer independent study project. This
work was funded in part by grants from NSF, Microsoft and the Pitts-
burgh Digital Greenhouse, and equipment grants from Mitsubishi Electric
Research Laboratories, VividLogic, Symbol Technologies, Hewlett-
Packard, and Lucent. The National Science Foundation funded this work
through a Graduate Research Fellowship for the first author, and under
Grant No. IIS-0117658. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams,

S.M., and Shuster, J.E. “UIML: An Appliance-Independent
XML User Interface Language,” in The Eighth International
World Wide Web Conference. 1999. Toronto, Canada

2. Brouwer-Janse, M.D., Bennett, R.W., Endo, T., van Nes, F.L.,
Strubbe, H.J., and Gentner, D.R. “Interfaces for consumer
products: "how to camouflage the computer?"” in CHI'1992:
Human factors in computing systems. 1992. pp. 287-290.

3. CMU, “Carnegie Mellon Pronuncing Dictionary,” 1998.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

4. de Baar, D.J.M.J., Foley, J.D., Mullet, K.E. “Coupling Appli-
cation Design and User Interface Design,” in Conference on
Human Factors and Computing Systems. 1992. Monterey,
California: ACM Press. pp. 259-266.

5. Eustice, K.F., Lehman, T.J., Morales, A., Munson, M.C., Ed-
lund, S., and Guillen, M., “A Universal Information
Appliance.” IBM Systems Journal, 1999. 38(4): pp. 575-601.

6. Haartsen, J., Naghshineh, M., Inouye, J., Joeressen, O.J., and
Allen, W., “Bluetooth: Vision, Goals, and Architecture.” ACM
Mobile Computing and Communications Review, 1998. 2(4):
pp. 38-45. Oct. www.bluetooth.com.

7. HAVi, “Home Audio/Video Interoperability,” 2002.
http://www.havi.org.

8. Hodes, T.D., Katz, R.H., Servan-Schreiber, E., and Rowe, L.
“Composable ad-hoc mobile services for universal interac-
tion,” in Proceedings of ACM Mobicom'97. Budapest
Hungary: pp. 1-12.

9. homeautonz, “Home Automation Webring,” 2002.
http://c.webring.com/webring?ring=homeauto;list.

10. inVoca, “inVoca Universal Remote,” http://www.invoca.com.

11. Kim, W.C. and Foley, J.D. “Providing High-level Control and
Expert Assistance in the User Interface Presentation Design,”
in Proceedings INTERCHI'93: Human Factors in Computing
Systems. 1993. Amsterdam, The Netherlands: pp. 430-437.

12. Myers, B.A., “Using Hand-Held Devices and PCs Together.”
Communications of the ACM, 2001. 44(11): pp. 34-41.

13. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., Shriver, S. “Requirements for Automati-
cally Generating Multi-Modal Interfaces for Complex
Appliances,” in ICMI. 2002. Pittsburgh, PA:

14. Nichols, J.W. “Using Handhelds as Controls for Everyday
Appliances: A Paper Prototype Study,” in ACM CHI'2001
Student Posters. 2001. Seattle, WA: pp. 443-444.

15. Olsen Jr., D.R. “A Programming Language Basis for User In-
terface Management,” in Proceedings SIGCHI'89: Human
Factors in Computing Systems. 1989. pp. 171-176.

16. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., and
Fredrickson, P. “Cross-modal Interaction using Xweb,” in
Proceedings UIST'00: ACM SIGGRAPH Symposium on User
Interface Software and Technology. 2000. pp. 191-200.

17. Philips, Pronto Intelligent Remote Control. Philips Consumer
Electronics, 2001. http://www.pronto.philips.com/.

18. Ponnekanti, S.R., Lee, B., Fox, A., Hanrahan, P., and
T.Winograd. “ICrafter: A service framework for ubiquitous
computing environments,” in UBICOMP 2001. pp. 56-75.

19. Rosenfeld, R., “Universal Speech Interfaces Web Site,” 2002.
http://www.cs.cmu.edu/~usi/.

20. Rosenfeld, R., Olsen, D., Rudnicky, A., “Universal Speech
Interfaces.” interactions: New Visions of Human-Computer
Interaction, 2001. VIII(6): pp. 34-44.

21. Shriver, S., Black, A.W., Rosenfeld, R. “Audio Signals in
Speech Interfaces,” in ICSLP. 2000.

22. Shriver, S., Toth, A., Zhu, X., Rudnikcy, A., Rosenfeld, R. “A
Unified Design for Human-Machine Voice Interaction,” in
Extended Abstracts of CHI 2001. 2001. pp. 247-248.

23. Sproat, R., Hunt, A., Ostendorf, P., Taylor, P., Black, A.,
Lenzo, K., Edgington, M. “SABLE: A Standard for TTS
Markup,” in International Conference on Spoken Language
Processing. 1998. Sydney, Australia:

24. Sun, Jini Connection Technology. Sun Microsystems,
http://www.sun.com/jini/, 2000.

25. Szekely, P., Luo, P., and Neches, R. “Beyond Interface Build-
ers: Model-Based Interface Tools,” in Proceedings
INTERCHI'93: Human Factors in Computing Systems. 1993.
Amsterdam, The Netherlands: pp. 383-390.

26. UPnP, “Universal Plug and Play Forum,” 2002.
http://www.upnp.org.

27. Vander Zanden, B. and Myers, B.A. “Automatic, Look-and-
Feel Independent Dialog Creation for Graphical User Inter-
faces,” in Proceedings SIGCHI'90. 1990. pp. 27-34.

28. Ward, W. “The CMU Air Travel Information Service: Under-
standing Spontaneous Speech,” in DARPA Speech and
Natural Language Workshop. 1990.

29. Wiecha, C., Bennett, W., Boies, S., Gould, J., Greene, S.,
“ITS: A Tool for Rapidly Developing Interactive Applica-
tions.” ACM Transactions on Information Systems, 1990.
8(3): pp. 204-236.

30. Zimmermann, G., Vanderheiden, G., Gilman, A. “Prototype
Implementations for a Universal Remote Console Specifica-
tion,” in CHI'2002. 2002. Minneapolis, MN: pp. 510-511.

170 Volume 4, Issue 2

